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1 Introduction.

The pattern of lottery winners in Perfectia appears to be distributed unevenly according to
the x and y coordinates of the winner locations. We will examine whether the dependence
of lottery winning on location also depends on the income of individuals who win, and
whether the point process that governs the winner locations can be adequately described by
a stationary Poisson process. I will begin with a summary of the data, an examination of the
K, J, and other functions that tell us whether a stationary Poisson process is adequate, and
various models that attempt to fit the point process, including log linear Poisson, Poisson
with covariate, quadratic Poisson, and clustered linear models. I will end with a discussion
of the goodness of fit of these models, which well examine via AIC, Baddeley residuals, and
data thinning. I found that clustering is helpful in accounting for the data I observe, and
that using income as a covariate greatly increases the models goodness-of- fit. However,
better models may be possible in view of the revelation of clustering patterns in the thinned
data generated from a clustered model.

2 Results.

Figure 1 shows the distribution of 2961 lottery winners in Perfectia since 2002 as x and y
coordinates of where the winners lived. Notice that there appears to be some regions of
empty space where no winners live, and that there appears to be few lottery winners below
the fourth latitude (y). The income covariate is shown in figure 2, in which cyan indicates low
income areas and progressively more maroon areas denote where higher income Perfectians
live. Thus the graph is a contour plot of a 10 by 10 array of numbers indicating the level of
the average income at each point. It isnt a 10 by 10 grid because its a contour plot. The
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colors indicate that there are spots of high income below the fourth latitude, as well as a
region near (2, 6). This may provide an explanation of the pattern of lack of winners below
the fourth latitude found in figure 1.

Figure 3 shows a Kernel smoothed contour that estimates the number of points within a
unit area of Perfectia as a continuous density estimate for the intensity of the point process.
Here, red indicates low density, and progressively lighter colors area areas of high density.
I chose a bandwidth of 1.5, because below this value, one tends to see a pattern that has
a possibly spurious peak near (7, 6). I elected to have as smooth a density estimate as
possible that provides a sensible summary of the main trends. The figure shows that the
highest density of points appear to be at the upper right hand corner Perfectia, and that
more lottery winners are found at higher latitude.

Figure 4 attempts to examine whether our simple point process can be sufficiently de-
scribed using a stationary Poisson process with space-independent conditional intensity,
which would provide a model without clustering and inhibition. The Ripley K function
provides a measure of the expected number of points at distance r away from a given point,
not including the point itself. The function that we use already account for the boundary
effect. As the first plot shows, the K function always increases with r, but at the interest
of showing just the major trends, and to tractably run the code, Ive only looked at K(r) up
to r = 0.3. Since the estimated (solid) K(r) is greater than the theoretical (dotted) K(r) at
r > 0.05, I surmise that the stationary Poisson process model may not be sufficient. If the
actual K(r) is large for some r, that implies that there are more points at distance r away and
below than expected, indicating the possibility of clustering below r. To see this better, we

plotted in figure 5
√

K(r)
π

− r, which should be zero for all r, since K(r) should scale as πr2.

Indeed, we see that this L function has values above zero at all r > 0, indicating clustering.
The L function reaches a peak at about r = 0.1, which provides a measure for the sizes of
the clusters.

The other plots in figure 4 provide the information in a different form. The F, or empty
space function, gives the area around each point before hitting its nearest neighbor. As
expected, this function is smaller than expected at a given r, indicating the smaller space
between points compared to a stationary Poisson process. The G function shows the distri-
bution of nearest neighbor distances at each r, so that at a high enough r (which I see as
0.3), all nearest neighbor distances fall within r (1.0 for a cumulative distribution function).
Again, higher than expected estimated G(r) at some r indicates that more points are within
r than expected under a stationary Poisson process. Finally, the J function of Van Lieshout
and Baddeley is given by 1−G(r)

1−F (r)
, which should be one for a uniformly random Poisson process,

since there should be the same amount of empty space for each nearest neighbor distance.
Since we see that J(r) tends to zero as r increases, we conclude that theres clustering thats
not accounted for by the stationary Poisson model.

The next step is to fit a model to the data. As a first approximation, we try a log linear
Poisson model with the intensity related to the coordinates as

log λ(x, y) = β0 + β1x + β2y,
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with the trend surface and contour plot shown in figure 6. As the surfaces show, the model
tries to pick up on the increase in number of winners with y (latitude) and also slightly with
x (longitude). The fitted model gives an intercept β0 = 2.67, while β1 = 0.018 for x and
β2 = 0.114 for y. The latter βs tell us that when x (or y) is increased by one unit, the
rate λ is multiplied by eβ unit, so that β > 0 implies that the rate increases with both x
and y, although much more so with y. The contour plots show the same information in two
dimensions, indicating that the model predicts a higher rate at high latitudes. The density
of points is labeled in the last figure. Notice that the clustering and income information are
not picked up by the model. In the latter case, the income is high at around (2, 6) and (8, 2),
and generally has a nonlinear looking distribution. The fact that our model is linear in the
log of the rate means that we may not be able to pick this up. Also, theres no mechanism
for explaining clustering in this simplest model. It turns out the AIC is -14456 for this log
linear Poisson model.

In figure 7, the fit of a log quadratic Poisson model is shown:

log λ(x, y) = β0 + β1x + β2y + β3x
2 + β4y

2.

Notice that the model tries to pick up on the pattern of high density at the upper right
corner and low density at the lower left corner by having a quadratic trend surface. The
AIC given two extra parameters is now -14501, which is slightly better than the linear model.
However, neither the clustering nor the income covariates are taken into account, and theres
little reason to suggest why the winner distribution should depend on the squared terms of
each coordinate. The βs for the quadratic terms are both less than zero (-0.007 and -0.0167),
so we see that the increase with x and especially y are greater at some central regime, and
the quadratic terms (eβ < 1) refines this area.

In figure 8, a smoothed contour for a log linear Poisson model with income as a covariate
is used, specified by

log λ(x, y) = β0 + β1x + β2y + β3inc,

where inc is the income level at coordinate (x, y). As the figure shows, the income level
tends to push the model from figure 6 into a more refined fit that incorporates the income
distribution seen in figure 5. As expected, β3 < 0 for income, so that as income increases
(the lower latitudes), the number of lottery winners decrease. Thus, the lottery may be
a mechanism for redistribution of wealth. Figure 9 shows the contour for a log quadratic
Poisson model with formula

log λ(x, y) = β0 + β1x + β2y + β3x
2 + β4y

2 + β5inc.

Notice how the quadratic fit rotates the contour in a sense, allowing the income-influenced
trend curve take on a more curved shape around the upper right and lower left corners. The
βs for all by the x and y coordinate predictors are less than zero, as expected from individual
previous models that use each of the components on its own. The AIC for the log linear
covariate Poisson model is -15020; the AIC for the quadratic linear covariate Poisson model
is -15029, both significant improvements over the corresponding models that dont use the
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covariate. Notice, however, that the fit for the quadratic model is not that much better than
the linear one.

Next, we decided to try using maximum likelihood estimation (MLE) to find parameters
for the models detailed above. This gives us an additional level of flexibility in specifying
the model and displaying the results. We minimize the negative log likelihood

∫

A

log λ(x, y)dN −

∫

Z

λ(x, y)dxdy

in each of the following cases, but using different expressions of the log likelihood depending
on whether were doing a Poisson model and whether were using covariates. Because we
call an iterative optimization function that looks for parameters estimates that lower the
negative log likelihood, I compared the estimate that we began the iteration with and the
estimate at the conclusion of the call in the case of the Poisson model with covariates. Notice
that the covariate model found by MLE has more areas of twists and turns as seen in the
intensity plot when compared with the simple Poisson model. With this added flexibility, we
were able to fit a cluster model with covariates to the data. Here, instead of using just x, y,
and income, we also included a term that penalizes large distances before seeing a point. As
seen in figure 10, the cluster model with covariate has a smoother pattern than the one with
the Poisson model. Also in the figure, the original starting parameter gives a terrible model.
The darker cells are points of increased intensity, and the lighter cells have lower intensity.
The AIC for the Poisson model estimated using MLE is similar to the one estimated by using
spatstat, and is -14488. The Poisson model with covariate has AIC -14492. However, the
cluster model has the best fit and the lowest AIC at -15310. This indicates that clustering
likely pervades the data and the best model takes advantage of this effect.

The AIC measures the goodness-of-fit of a model to the data, but discounts the number
of parameters in its comparison. It is given by

2p − 2 log(likelihood),

where p is the number of parameters in the model. Thus, increasing the likelihood and
decreasing the number of parameters both have the effect of lowering the AIC. A plot of the
AICs for each model is shown in the upper left corner of figure 11. In general, the models
with covariates (the first two from the left) have much lower AIC than the models without
covariates. Also, the cluster model is even better than the Poisson covariate models in terms
of having lower AIC. Thus, in terms of trading off maximizing likelihood and minimizing
number of parameters, the cluster model is the best model we have examined.

The rest of figure 11 shows the Baddeley residuals for the Poisson log linear, Poisson
log linear with covariate, and clustered linear with covariate models. Notice that none of
the three plots show any obvious pattern, so we can suggest that the model assumption of
constant variance is likely to be valid. The Baddeley residuals compare the number of points
within the cell to the expected number of points. Although weve used an arbitrary 50 by 50
grid here for the computation, we do note that there appears to be a higher number of points
at the center of the region than expected based on the model. This may be due to the lack
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of negative income correlation with lottery winning at the center of Perfectia. But since this
would have no bearing on the log linear Poisson model without covariates, it is more likely
that a linear model does not take into account a sizable number of lottery winners at the
casino, where lottery tickets may have been sold, or where people are more likely to gamble
regardless of their backgrounds. The models we have considered does not take into account
this increase in lottery winners near the location of the casino.

Another way to evaluate the goodness-of-fit of a model is to thin the data according to
the probability of being in a region over the intensity at that point. The resulting thinned
data set will be close to a simple stationary Poisson process if the intensity is indeed well
modeled by the model under consideration. In figure 12, the thinned data and their resulting
K and J functions are shown for both the clustered and Poisson log linear models. Notice
that we still have the estimated K(r) greater than the theoretical K(r), and the estimated
J(r) below zero, both sighs that the data is clustered, even after removal according to our
algorithm. This may mean that even the clustered models fit does not completely take out
the clustering factor in the design, but closer inspection also reveals that the departure from
zero of J(r) is less pronounced, especially in the clustered models case. It is likely that calling
nlm a few more times with the estimated parameter as the starting parameter may alleviate
the situation by finding the more optimal MLE, although this thinning technique does reveal
an inadequacy in the fit of our models.

3 Discussion.

The number of lottery winners within a region of Perfectia is explained by geographical
location and income level. The number of winners correlates with latitude (y) and slightly
with longitude (x), while also negatively correlating with income level. Fitting linear and
quadratic Poisson and clustered models using spatstat and optimization of MLE show that
the best model is the clustered model that includes a term for the income covariate, and
that other models with the covariate are better than the models without the covariate term.
We suggest that the distribution of lottery winners in Perfectia is not uniformly random as
expected under a stationary Poisson process, since the K, J, and other functions also express
deviations from theoretical values.

The distribution of income suggests that the pattern of lottery winners can potentially
be explained by a decrease in income with an increase in latitude. The models that utilize
income as a covariate had much lower AICs, and provided better fits. This suggests that
Perfectians who life in Moller park and Baddeley housing projects may purchase tickets
and win the lottery more frequently, possibly due to their need for money and motivation
for simple get-rich projects. Higher income individuals also may have little motivation for
acquire more wealth. Moreover, recreational centers like gold courses and tennis courts may
have provide facilities for selling lottery tickets. Income is an important predictor of lottery
winning.

The clustered model, and especially the Poisson models, do not take into account the
presence of a casino at the center of Perfectia. Looking at the kernel smoothed density of the
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lottery winners, we notice a small bulge at the center of Perfectia, especially at bandwidths
less than 1.5. This may reflect the more numerous locations for selling lottery tickets at the
casino and the possibility that people who live near the casino are more risk-prone, and like
to purchase lottery tickets, hence increasing their chances of winning. The clustered model
and Poisson model evaluated under the Baddeley residuals appear to be adequate, but the
finer data thinning scheme reveals that neither are wholly accurate. Moreover, as the J
function shows, the maximum discrepancy between the model and the actual data occurs at
around r = 1.5, and the kernel smoothed version of the data shows a bulge around (6, 5),
which is the location of the casino, while the models all show fairly even ascent in terms of
intensity going from low to high latitude. Thus the presence of the casino may be a factor
on top of the clustering and income distribution variables that we used to come up with our
best models.

Future analysis of the data may include the refinement of the MLE technique to ensure
that we only stop changing parameters to descend the negative log likelihood when the
likelihood no longer changes due to a nudge in the parameters. This would allow us to
more accurately determine the MLE for a model and improve the AIC. This may have
been a problem with the nlm function arguments. Another suggestion would involve the
use of a general clustered process model like the Strauss model or Neyman-Scott model.
The latter was seen to generate points that look qualitatively similar to our data set when
the radius is kept low (0.1 or so). Unfortunately, my computational hardware could not
estimate either model using spatstat due to memory requirements. One drawback in my
analysis is the inability to distinguish between clustering of lottery sellers and clustering of
the population. The increased number of lottery sellers in an area may be due either to the
clustering of neighborhoods around some nonresidential (empty) areas, or to the clustering
of shops that sell lottery tickets. Another limitation of our technique is the lack of ability to
account for structures and institutions within Perfectia, such as the casino at the center of
the region. These institutions will differentially possess differing numbers of lottery sellers.
The population at each area is also not specified. It could be that more people live at the
higher latitudes, and hence are more likely to win lotteries. The income data would in that
case not be an explanatory variable, and its correlation with the number of winners may be
coincidental.
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4 Figures.
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Figure 1: Graphical summary of lottery winners in Perfectia.
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Figure 2: Graphical summary of income covariate in Perfectia.
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Kernel smoothed lottery points with bandwidth=1.5
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Figure 3: Kernel smoothed winners data using a bandwidth of 1.5.
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Figure 4: Theoretical (dotted) and estimated (solid) K, F, G, and J functions for the Perfectia
winners data.
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Figure 5: L function for the Perfectia data, calculated as
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− r, which is expected to

be constantly zero if the process is Poisson.
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Figure 6: Log linear Poisson model fit to winners data, including trend surface and contour
plot, points superimposed in the last plot.
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Figure 7: Log quadratic Poisson model fit to winners data, including trend surface and
contour plot, points superimposed in the last plot.
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Figure 8: Contour plot of log linear Poisson model with income covariate.
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Figure 9: Contour plot of log quadratic Poisson model with income covariate.
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Figure 10: MLE implementations of log linear Poisson (upper left), Poisson with covariate
(upper right), and cluster model with covariate (lower left) models, with original parameters
for the Poisson with covariate before calling nlm as comparison.
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AIC goodness of fit of each model
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Figure 11: Goodness of fit assessment for each model. AIC (upper left) for each model,
from left to right, the models are Poisson with covariate (-15020), quadratic Poisson with
covariate (-15029), MLE estimation of cluster model (-15210), MLE estimation of covariate
Poisson model (-14492), MLE estimation of Poisson model (-14488), log linear Poisson model
(-14456), log quadratic Poisson model (-14501). Baddeley residuals (other plots) for each of
the MLE estimated models.
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Figure 12: Thinned data using each model and their K and J functions.
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