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Abstract

Motor planning is modeled as a tracking problem in the case of rapid mo-
tor executions as in swatting a fly. Visual feedback and commanded motor
movement are coupled in a linear dynamical systems graphical model of the
task. Parameters learned by the EM Algorithm on an artificial data set
reflect underlying system dynamics.

1 Introduction

How does motor planning and execution incorporate visual information when
tracking a fast-moving object in space?” Omne hypothesis involves the activ-
ity of an internal model consisting of a forward predicting and an inverse
kinematic module [10]. Reviews by Jordan ( [4] and [3]) give more details.
A recent attempt to model selection of motor programs learns an HMM-
based switch model for different types of objects [1]. A similar approach is
advocated by Shademehr and Thoroughman [9].

Our approach here is simpler. We treat the motor planning problem as a
tracking problem in which the nervous system estimates the positions of both
the target and the hand position. The resulting graphical model is a coupled
linear dynamical system that can be learned using the EM Algorithm. The
approach is similar to what Wu and Huang calls co-inference tracking [11].
In their paper, they gave a sequential Monte Carlo algorithm that utilizes a
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bottom up EM step to track both color and shape distributions in a video
sequence. We will begin wih a similar model adapted, in our case, to track
a target in 2D with a 3D representation of hand position and velocity. We
hope to extend the model by incorporating a switching motor control module
within the arm location estimator.

2 Graphical model

Every node in the model is continuous, with equations that look like

Hy(t+1) = BVy(t+1)— Hy(t) + Wn(t),
Vi(t+1) = AVy(t) + Wi (t),

H,(t) = CyxH(t)+ Ug(t),

V() = CyVi(t)+ Uy (t),

where H is the control module associated with the hand, H, is the estimated
hand parameters (in particular, hand position), V; and V,, are the estimated
and observed target motion characteristics, A, B, and C' are corresponding
output matrices, and the Ws and Us are noise. H, and V,, are observed. Note
that the first equation accounts for sensory correction due to visual feedback.

Figure 1: Graphical model of visuomotor tracking. Note that VisSt and
Hand nodes are observed in our case.

From Figure 1, we see that visual information enters the system by cor-
recting the control signal at the next time step (the alignment of the time
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slice is arbitrary). Given the controller, the observed motor characteristics
are independent of all visual information.

3 Implementation and results

I first built a Kalman filter with RTS smoothing ([5]) for tracking positions
and velocities, for the V; and V,, cluster of the graphical model. I implemented
a sequential MCMC ([8], [7]) algorithm known as the Particle filter [2], which
can handle the case of non-Gaussian emission and transition probabilities. I
tested the two algorithms on data sampled from a linear dynamical system
with Gaussian emissions (see the file track.m; availability discussed in the
appendix).

Noisy observations of particle positions. Kalman filter estimates of particle positions.
T T T

RTS smoother estimates of particle positions. Particle filter estimates of particle positions
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The upper left figure is the observed data, the upper right is the Kalman
filtered trajectory with Gaussian confidence elipse, the lower left is the RTS
smoothed trajectory, the lower right is the particle filtered trajectory with
variance calculated across samples for each dimension (and zero covariance).
Note that the Particle filter has nearly constant variance across time. The
major disadvantage of the Particle filter is that it is not obvious how to
learn the parameters of the sample propagation (transition probabilities)
and likelihood weighting (emission probabilities). We could, for example,
run the algorithm many times to learn the optimal parameters. Here, I set
the parameters equal to the initial Kalman filtering parameters.

Next I implemented the model of Figure 1 using linear dynamical compo-
nents. I generated some test data from reasonable dynamical considerations.
For example, subjects usually move slowly initially, speeds up in the middle
of the trajectory, and slow down again towards the end of the movement.

2D view of particle and arm positions in time.
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Figure 2: Artificial data used to train the graphical model, shown in 2D.
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Figure 3 shows the V, as green dots and H, as red lines against the
true target trajectory in black. Figure 3 shows the 3D representation. Our
model assumes a 6D H; representing the three spatial dimensions and their
derivatives, a 4D V; for visual tracking of 2D coordinates and their time
derivatives, and 3D H, and 2D V,, observations of spatial locations. The
parameters learned are given in the appendix. A log likelihood trace of EM
is shown in Figure 3.

Observed arm motion H0 and true target trajectory VS

X

Figure 3: Trajectory of arm movement used to train the model.

4 Future work

It would be fruitful to conduct a linear systems analysis of the stability of
the system. We have the visual signal as input, the motor signal as feedback,
and the arm as the plant; output is the controller parameters.

The EM Algorithm takes a long time on this model. It would be useful
to implement variational inference for this factorized model, as is done in
[11]. More analysis of the results is necessary. In particular, we can look into
the velocity profiles of the learned model. We investigate how spatial cueing
effects come about by looking for consistencies among parameters learned
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Zoomed in trace of log likelihood during DBN EM estimation
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Figure 4: Trace of log likelihood during EM.
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for different conditions in an experiment. We can examine the smoothness
condition that is learned by the model.

The next step is to build a modular control system within the visuomotor
tracking framework. This allows us to recognize and track different objects
using a switch model. For example, swatting a fly is much more difficult than
catching a baseball. We want to capture this difficulty in parameters of the
model learned.

Appendix

Matlab code is found at http://inst.eecs.berkeley.edu/~rluo/cs281
See in particular the file vismotor.m to start things off. Some portions of
the code needs the BNT toolkit written by Kevin Murphy.

The parameters learned by EM for the model in Figure 1 are

node H_sO
m: 0.2125
-0.0174
2.0652
0.2764
-0.3802
-0.8041
s: 0.0058 -0.0018 0.0000 0.0000 0.0000 -0.0000
-0.0018 0.0025 0.0000 0.0000 -0.0000 -0.0000
0.0000 0.0000 0.0370 -0.0445 0.0802 -0.0502
0.0000 0.0000 -0.0445 0.1391 -0.2566 0.1239
0.0000 -0.0000 0.0802 -0.2566 0.4787 -0.2293
-0.0000 -0.0000 -0.0502 0.1239 -0.2293 0.1175
node V_sO
m: 2.0652
0.2764
-0.3802
-0.8041
s: 0.0370 -0.0445 0.0802 -0.0502
-0.0445 0.1391 -0.2566 0.1239
0.0802 -0.2566 0.4787 -0.2293
-0.0502 0.1239 -0.2293 0.1175
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.0000
.0000
.0000
.0000
.0000
.0000
.3214
-0.0319 0.
0.0612
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1263

.0506
.1083

V_s1

.0000
.0000
.0000
.0000
.0724
-0.0086 0.

-0.

-0.

0461 2.4727

3596

.0751

0319 0.0612 0.1263 0.0506 0.1083
0901 -0.0219 -0.1511 -0.0948 -0.0554

.0219 4.6232 8.6694 7.0972 6.5681

.1511 8.6694 17.0857 13.6294 12.7710
.0948 7.0972 13.6294 11.4500 10.2067
.06b64 6.5681 12.7710 10.2067 9.7093

0086 -0.0062 -0.0170
0501 -0.0154 0.0176

-0.0062 -0.0154 0.0824 -0.0183
-0.0170 0.0176 -0.0183 0.0369
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